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Abstract

Emerging telemedicine applications require the ability to exploit diverse, geographi-
cally distributed resources. These applications use high-speed networks to integrate
supercomputers, large databases, archival storage devices, advanced visualization de-
vices, and/or sophisticated instruments. This form of networked virtual supercomput-
ers is also known as metacomputers and is beeing used by many other scientific applica-
tions areas. In this article, we analyze requirements necessary for a telemedicine com-
puting infrastructure and compare them with requirements found in a typical meta-
computing environment. We will show that metacomputing environments can be used
to enable a more powerful and unified computational infrastructure for telemedicine.
The Globus metacomputing environment can provide the necessary basis to enable a
large scale telemdical infrastructure. Globus is designed in a modular fashion and can
be extended to support the specific requirements for telemedicine.
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1 Introduction

In the last decade, dramatic advances in software and hardware technology have
changed the landscape for computing. Today, personal computers have reached a
performance level which one could have only dreamed of, a couple of years ago. The
increase in processor speed is accompanied by the availability of memory to economical
prizes. New graphic cards let a PC perform at almost workstation speed. On the high
end, vector-supercomputers are outperformed by distributed memory parallel archi-
tectures. Furthermore, changes in software engineering are marked by the acceptance
of object oriented programming concepts and languages.

Computer networks have evolved from local area networks, over medium area
networks, to wide area networks. The new hardware enables the distribution of infor-
mation in a global “World Wide Web”. The World Wide Web has established itself
as a functioning computing environment, accessible by the ever-increasing number of
online users. Starting from the desire to provide a mechanism for exchanging data
between scientists, it has reached the potential to become the computing platform of
the future. Hardware advances in the network technology, like the introduction of the
ATM technology (Asynchronous Transfer Mode), provide the necessary backbone for
the fast information exchange between computers.

Currently, the WWW is most frequently used for exchanging data, and allowing
online users to access information stored at remote sites. Besides redistributing in-
formation, the WWW can be used to redistribute computations on different compute



servers. Computations can be mapped to idle compute servers or unique compute
resources which otherwise would not be available. An environment managing the
resources of many cooperating computers is known as metacomputing environmnet.
Without doubt, a functioning metacomputer, controlled by such an environment, will
influence not only developments in telemedicine but also many other research fields.
Many of the computing components, which have been originally developed for the
scientific research community, can be reused for a computational infrastructure in
telemedicine and tele-informatics.

One of the goals of this paper it to examine the possibility to reuse existing meta-
computing technologies for telemedicine. First, we will define the term telemedicine
and derive necessary requirements that influence the design of a compute infrastruc-
ture. We show that this infrastructure is similar to existing metacomputing testbeds as
used in the Globus metacomputing framework. We analyze the Globus metacomputing
framework and indicate where it can help in order to support telemedical applications.

2 Telemedicine

Telemedicine is an emerging discipline, which utilizes the newest technologies to trans-
mit medical information with the help of electric signals. From this broad definition,
it is clear that the applications in telemedicine are of a wide spectrum. Telemedicine
is used in the following areas:

e Tele consulting and assistance
— Remote supervision
— Remote consulting

— Medical Video Conferencing
e Virtual medical libraries

— Document distribution via WWW
— Medical databases

— Research databases
e Virtual medical stores

— Accounting
— Product databases

— Service Brokers

This list is not comprehensive but shows examples where telemedicine is used and
will be used in future. Today telemedicine is in wide practical use. Tele consulting
between doctors in geographically disperse locations is daily done by e.g., video, e-
mail, and telephone. Video conferencing is used for diagnosing, as well as, educational
purposes. Material containing medical information is nowadays often distributed via
WWW. The functionality of the WWW in the area of telemedicine reaches from buying
medical products to a visit of a virtual telemedical office. Telemedicine is successfully
used to reach underserved areas. Some of the leading goals of telemedicine are to
enable

e an increase of the availability of services,
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Figure 1: Different Layers of a telemedicine environment

e instant access to data,

e secure access and exchange of data,
e user friendly access,

e a high quality of service, and

e to reduce the cost for the health service.

infrastructure.

Figure 10 depicts a layered abstraction of a telemedicine infrastructure. The low-
est level includes the available hardware components for input, output, storage and
processing of medical information. Compute servers range from PCs to workstations
and graphic engines, as well as, supercomputers. Input devices can be as simple as
PCs for the input of patient data records. More complex and expensive devices like
X-ray and computer tomography devices are also available in a telemedical infrastruc-
ture. This can go as far as to include synchrotrons for bio-medical research[?]. The
huge amount of data has to be stored on large storage devices. Output devices are
also of a wide variety, ranging from specialized printers and monitors to virtual reality
CAVES. The different devices are connected via a network using different technology
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Figure 2: Resources needed to implement applications in a metacomputing
environment

dependent on the service that should be provided. The network layer and the hard-
ware layer are accessed via services. This enables a necessary abstraction form the
underlying hardware in order to achieve interoperability between different compute
platforms and communication protocols. An example for such a high level service are
database services and their application interfaces that allows access to a possible dis-
tributed database. The highest level of abstraction is defined by the application layer.
For many users of telemedicine it is not important to know the details of the compute
and network environment. Thus, many details can be hidden from the end user of a
telemedicine environment. Usually the user will communicate via a sophisticated and
user specific graphical user interface with the application or service she is interested in.
This means that the internal structure of a telemedicine environment can be hidden
from the end user.

From the computational point of view it is important to analyse the needs necessary
to enable:

e medical information gathering/input,
e medical information storage,

e medical information processing,

e medical information exchange, and

e medical information visualization/output.

To enable this kind of information processing one needs the following . (Figure 10).



Table 1: Storage requirements for imaging techniques and transmission times
while using different network transport medias/services

pixels image average number calc average storage  Kbits Kbits  Mbits Mbits mbits mbit
hor vert depth of images/exam memory requirement 28.8 128 1.54 45.3 1.5 155
512 12 30 12 15 69.4 15.6 9.7 0.3 10.0 0.1(
256 12 50 3 6.5 30.1 6.8 4.2 0.1 4.3 0.0¢
1000 8 20 45 20 92.6 20.8 13.0 0.4 13.3 0.1:
1000 8 15 45 15 69.4 15.6 9.7 0.3 10.0 0.1(
512 6 36 12 9 41.7 9.4 5.8 0.2 6.0 0.0¢
128 8 26 1 0.4 1.9 0.4 0.3 0.01 0.3 0.00
2000 10 4 180 32 148.1 33.3 20.8 0.7 21.3 0.21
4000 12 4 720 128 592.6 133.3 83.1 2.8 85.3 0.8:

inmin in min in sec in sec in sec in se

3 Infrastructure requirements for telemedicine

Information exchange. The success of telemedecine is largely dependent on a
broad network infrastructure. The network technologies used in a telemedical envi-
ronment include asynchronous transfer mode (ATM), satellites, asymmetrical digital
subscriber line (ADSL), and cable modems. Lower bandwidth technologies are stan-
dard analog phone lines, and digital networks with integrated services digital network
(ISDN). The proper selection of a communication service is also determined by the
type(s) of information, the amount of information, and the urgency of the information
exchange which is illustrated in Figure 1. The choice is determined by a cost versus
benefit factor.

Information processing, vizualization and output. The computational
power needed for some telemedical applications is large. An example is the computa-
tional power of a single workstation is today still not able to render a large quantity
of the computational power of supercomputers makes it possible to enable real-time
steering during examinations (Figure 3).

Other examples are can be found in the X-ray analysis of large molecular structures
to improve the knoledge to find medical treatments. Image detection algorithms, which
build only the first step in a series of calculations, take today on an Origin 2000 a day
to complete[?].

Another application that is of great impact in the health industrie is the analysis
of gene sequences. A small comparison of about 9 genome sequenzes of will result in
a total of 16.9 million comparisons. Each of the comparisons will take a considerable
time to finish (under 1 minute dependent on the processor used). Such a calculataion
would create about 20Gbyte of data to be stored during the calculation[?].

Clearly utilizing the computational power of a metacomputing environment will
help twofold. First, the turnaroud time of a calculation is smaller. Thus, experiments
can be analysed more quickly. Second, due to the available compute power bigger
problems can be solved in the same amount of time.
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Figure 3: Usage of supercomputers in imaging and computational steering

4 Metacomputing Environments

Telemedicine requires unique capabilities that are not available in a single computer.
Applications like telemedicine motivate the construction of networked virtual super-
computers, or metacomputers [2], execution environments in which high-speed net-
works are used to connect supercomputers, databases, scientific instruments, and ad-
vanced display devices, perhaps located at geographically distributed sites. In princi-
ple, networked virtual supercomputers can both increase accessibility to supercomput-
ing capabilities and enable the assembly of unique capabilities that could not otherwise
be created in a cost-effective manner.

5 Metacomputing

We use the term metacomputer to denote a networked virtual supercomputer, con-
structed dynamically from geographically distributed resources linked by high-speed
networks. Figure 4 illustrates an example of such a system.

Metacomputing, like more mainstream applications of distributed computing, is
motivated by a need to access resources not located within a single computer system.
Frequently, the driving force is economic: the resources in question—for example,
supercomputers—are too expensive to be replicated. Alternatively, an application may
require resources that would not normally be co-located, because a particular config-
uration is required only rarely: for example, a collaborative telemedical environment
that connects several virtual reality systems, design databases, and supercomputers
required to work on a particular problem, like large medical image rendering. Finally,
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Figure 4: A metacomputer utilizing different compute resources

certain unique resources—such as specialized databases and people—cannot be repli-
cated. In each case, the ability to construct networked virtual supercomputers can
provide qualitatively new capabilities that enable new approaches to problem solving.

Experience with high-speed networking testbeds has demonstrated convincingly
that there are indeed applications of considerable scientific and economic importance
that can benefit from metacomputing capabilities. For example, the I-WAY networking
experiment, which connected supercomputers and other resources at 17 different sites
across North America, saw 60 groups develop applications in areas as diverse as large-
scale scientific simulation [22, 23], collaborative engineering [4, 5], and supercomputer-
enhanced scientific instruments [16].

Metacomputers have much in common with both distributed and parallel systems,
yet also differ from these two architectures in important ways. Like a distributed
system, a networked supercomputer must integrate resources of widely varying ca-
pabilities, connected by potentially unreliable networks and often located in different
administrative domains. However, the need for high performance can require program-
ming models and interfaces radically different from those used in distributed systems.
As in parallel computing, metacomputing applications often need to schedule commu-
nications carefully to meet performance requirements. However, the heterogeneous and
dynamic nature of metacomputing systems limits the applicability of current parallel
computing tools and techniques.

These considerations suggest that while metacomputing can build on distributed
and parallel software technologies, it also requires significant advances in mechanisms,
techniques, and tools. The Globus project is intended to accelerate these advances. In
a first phase, we are developing and deploying a metacomputing infrastructure toolkit



Applications

Application
Tools

High-level Services

Figure 5: Components of the Globus toolkit

providing basic capabilities and interfaces in areas such as communication, informa-
tion, resource location, resource scheduling, authentication, and data access. To-
gether, these toolkit components define a metacomputing abstract machine on which
can be constructed a range of alternative infrastructures, services, and applications
(Figure ?7). We ourselves are building parallel programming tools and resource dis-
covery and scheduling services, and other groups are working in other areas.

Our long-term goal in the Globus project is to address the problems of configuration
and performance optimization in metacomputing environments. These are challenging
issues, because of the inherent complexity of metacomputing systems, the fact that
resources are often only identified at runtime, and the dynamic nature of resource
characteristics. We believe that successful applications must be able to configure
themselves to fit the execution environment delivered by the metacomputing system,
and then adapt their behavior to subsequent changes in resource characteristics. We
are investigating the design of higher-level services layered on the Globus toolkit that
enable the construction of such adaptive applications. We refer collectively to these
services as forming an Adaptive Wide Area Resource Environment, or AWARE.

The rest of the article is as follows. In Section 5, we introduce general character-
istics of metacomputing systems and requirements for metacomputing infrastructure.
In Section 7?7, we describe the Globus architecture and the techniques used to support
resource-aware applications. In Section 7, we describe major toolkit components. In
Sections 8 and 9, we describe higher-level services constructed with the toolkit and
testbeds that have deployed toolkit components. We conclude in Section 12 with a
discussion of current system status and future plans.
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5.1

Metacomputing Applications

Scientists and engineers are just beginning to explore the new applications enabled by
networked supercomputing classes.

1.

5.2

Desktop supercomputing. These applications couple high-end graphics capabil-
ities with remote supercomputers and/or databases. This coupling connects
users more tightly with computing capabilities, while at the same time achiev-
ing distance independence between resources, developers, and users. Examples
are high quality rendering of medical images.

. Smart instruments. These applications connect users to instruments such as

microscopes, MRIs ,or satellite downlinks that are themselves coupled with re-
mote supercomputers. This computational enhancement can enable both quasi-
realtime processing of instrument output and interactive steering.

Collaborative environments. A third set of applications couple multiple virtual
environments so that users at different locations can interact with each other
and with supercomputer simulations [4, 5].

Distributed supercomputing. These applications couple multiple computers to
tackle problems that are too large for a single computer or that can benefit
from executing different problem components on different computer architec-
tures [20, 22, 23]. We can distinguish scheduled and unscheduled modes of
operation. In scheduled mode, resources, once acquired, are dedicated to an
application. In unscheduled mode, applications use otherwise idle resources
that may be reclaimed if needed; Condor [18] is one system that supports this
mode of operation. In general, scheduled mode is required for tightly coupled
simulations, particularly those with time constraints, while unscheduled mode
is appropriate for loosely coupled applications that can adapt to time-varying
resources. A possible example to use such an environment is the distributed
solution of gene sequencing problems which will have increased importance in
the near future[?].

Metasystem Characteristics

Scale and the need for selection. Due to the extreme distributed nature of
telemedical applications, it is important to implement a telemedical infrastructur
ein a large scale. Resource selection must be provided to allow the access of a
subset of resources.

Heterogeneity at multiple levels. Both the computing resources used to construct
virtual supercomputers and the networks that connect these resources are of-
ten highly heterogeneous. Heterogeneity arises at multiple levels, ranging from
physical devices, through system software, to scheduling and usage policies.

Unpredictable structure. Traditionally, high-performance applications have been
developed for a single class of system with well- known characteristics—or
even for one particular computer. In contrast, metacomputing applications like
telemedicine, require to execute in a wide range of environments, constructed
dynamically from available resources. Geographical distribution and complexity
are other factors that make it difficult to determine system characteristics such
as network bandwidth and latency a priori.
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e Dynamic and unpredictable behavior. Traditional high- performance systems
use scheduling disciplines such as space sharing or gang-scheduling to provide
exclusive—and hence predictable— access to processors and networks. In meta-
computing environments, resources—especially networks—are more likely to be
shared. Omne consequence of sharing is that behavior and performance can vary
over time. For example, in wide area networks built using the Internet Protocol
suite, network characteristics such as latency, bandwidth and jitter may vary
as traffic is rerouted. Large-scale metasystems may also suffer from network
and resource failures. In general, it is not possible to guarantee even minimum
quality of service requirements.

o Multiple administrative domains. The resources used by metacomputing ap-
plications are not owned or administered by a single entity. The need to deal
with multiple administrative entities complicates the already challenging net-
work security problem, as different entities may use different authentication
mechanisms, authorization schemes, and access policies. The need to execute
user- supplied code at different sites introduces additional concerns.

Fundamental to all of these issues is the need for mechanisms that allow applica-
tions to obtain real-time information about system structure and state, use that in-
formation to make configuration decisions, and be notified when information changes.
Required information can include network activity, available network interfaces, pro-
cessor characteristics, and authentication mechanisms. Decision processes can require
complex combinations of these data in order to achieve efficient end-to- end configu-
ration of complex networked systems.

6 The Globus Metacomputing Infrastructure Toolkit

A number of pioneering efforts have produced useful services for the metacomputing
application developer. For example, Parallel Virtual Machine (PVM) [12] and the
Message Passing Interface (MPI) [15] provide a machine-independent communication
layer, Condor [18] provides a uniform view of processor resources, Legion [13] builds
system components on a distributed object-oriented model, and the Andrew File Sys-
tem (AFS) [21] provides a uniform view of file resources. Each of these systems has
been proven effective in large-scale application experiments.

Our goal in the Globus project is not to compete with these and other related ef-
forts, but rather to provide basic infrastructure that can be used to construct portable,
high-performance implementations of a range of such services. To this end, we focus on
(a) the development of low- level mechanisms that can be used to implement higher-
level services, and (b) techniques that allow those services to observe and guide the
operation of these mechanisms. If successful, this approach can reduce the complex-
ity and improve the quality of metacomputing software by allowing a single low-level
infrastructure to be used for many purposes, and by providing solutions to the config-
uration problem in metacomputing systems.

To demonstrate that the Globus approach is workable, we must show that it is
possible to use a single set of low-level mechanisms to construct efficient implementa-
tions of diverse services on multiple platforms. In the following, we first introduce the
Globus toolkit and then describe the mechanisms that allow higher-level services to
observe and guide the operation of toolkit components.

12



6.1

The Globus Toolkit

The Globus toolkit comprises a set of modules. Each module defines an interface,
which higher-level services use to invoke that module’s mechanisms, and provides
an implementation, which uses appropriate low-level operations to implement these
mechanisms in different environments.

Currently identified toolkit modules are as follows. These descriptions focus on
requirements; Sections 7 and 9 address implementation status.

Resource location and allocation. This component provides mechanisms for ex-
pressing application resource requirements, for identifying resources that meet
these requirements, and for scheduling resources once they have been located.
Resource location mechanisms are required because applications cannot, in gen-
eral, be expected to know the exact location of required resources, particu-
larly when load and resource availability can vary. Resource allocation involves
scheduling the resource and performing any initialization required for subse-
quent process creation, data access, etc. In some situations—for example, on
some supercomputers—location and allocation must be performed in a single
step.

Communications. This component provides basic communication mechanisms.
These mechanisms must permit the efficient implementation of a wide range
of communication methods, including message passing, remote procedure call,
distributed shared memory, stream-based, and multicast. Mechanisms must
be cognizant of network quality of service parameters such as jitter, reliability,
latency, and bandwidth.

Unified resource information service. This component provides a uniform mecha-
nism for obtaining real-time information about metasystem structure and status.
The mechanism must allow components to post as well as receive information.
Support for scoping and access control is also required.

Authentication interface. This component provides basic authentication mech-
anisms that can be used to validate the identity of both users and resources.
These mechanisms provide building blocks for other security services such as au-
thorization and data security that need to know the identity of parties engaged
in an operation.

Process creation. This component is used to initiate computation on a resource
once it has been located and allocated. This task includes setting up executables,
creating an execution environment, starting an executable, passing arguments,
integrating the new process into the rest of the computation, and managing
termination and process shutdown.

Data access. This component is responsible for providing high- speed remote
access to persistent storage such as files. Some data resources such as databases
may be accessed via distributed database technology or the Common Object Re-
quest Broker Architecture (CORBA). The Globus data access module addresses
the problem of achieving high performance when accessing parallel file systems

and network-enabled I/O devices such as the High Performance Storage System
(HPSS).

Together, the various Globus toolkit modules can be thought of as defining a
metacomputing virtual machine. The definition of this virtual machine simplifies ap-
plication development and enhances portability by allowing programmers to think of
geographically distributed, heterogeneous collections of resources as unified entities.
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6.2 Support for Resource-Aware Services and Applica-
tions

Metacomputing applications often need to operate networking and computing re-
sources at close to maximum performance. Hence, metacomputing environments must
allow programmers to observe differences in system resource characteristics and to
guide how these resources are used to implement higher-level services. Achieving
these goals without compromising portability is a significant challenge for the designer
of metacomputing software.

We use the Globus communication module to illustrate some of these issues. This
module must select, for each call to its communication functions, one of several low-
level mechanisms. On a local area network, communication might be performed with
TCP/IP, while in a parallel computer, specialized high-performance protocols typically
offer higher bandwidth and lower latencies. In a wide area environment, specialized
ATM protocols can be more efficient. The ability to manage protocol parameters
(TCP packet size, network quality of service) further complicates the picture. The
choice of low- level mechanism used for a particular communication is a nontrivial
problem that can have significant implications for application performance.

Globus toolkit modules address this problem by providing interfaces that allow
the selection process to be exposed to, and guided by, higher-level tools and appli-
cations. These interfaces provide rule-based selection, resource property inquiry, and
notification mechanisms.

o Rule-based selection. Globus modules can identify selection points at which
choices from among alternatives (resources, parameter values, etc.) are made.

14



Associated with each selection point is a default selection rule provided by the
module developer (e.g., “use TCP packet size X,” “use TCP over ATM”). A
rule replacement mechanism allows higher-level services to specify alternative
strategies (“use TCP packet size Y, “use specialized ATM protocols”).

e Resource property inquiry. Information provided by the unified information
service (Section 7) can be used to guide selection processes within both Globus
modules and applications that use these modules. For example, a user might
provide a rule that states “use ATM interface if load is low, otherwise Internet,”
hence using information about network load to guide resource selection.

e Notification. A notification mechanism allows a higher-level service or applica-
tion to specify constraints on the quality of service delivered by a Globus service
and to name a call-back function that should be invoked if these constraints are
violated. This mechanism can be used, for example, to switch between networks
when one becomes loaded.

Higher-level services and applications can use Globus selection, inquiry, and notifi-
cation mechanisms to configure computations efficiently for available resources, and/or
to adapt behavior when the quantity and/or quality of available resources changes
dynamically during execution. For example, consider an application that performs
computation on one computer and transfers data over a wide area network for visu-
alization at remote sites. At startup time, the application can determine available
computational power and network capacity and configure its computational and com-
munication structures appropriately (e.g., it might decide to use compression for some
data but not others). During execution, notification mechanisms allow it to adapt to
changes in network quality of service.

We use the term Adaptive Wide Area Resource Environment (AWARE) to denote
a set of application interfaces, higher-level services, and adaptation policies that enable
specific classes of applications to exploit a metacomputing environment efficiently. We
are investigating AWARE components for several applications, and anticipate devel-
oping AWARE toolkits for different classes of metacomputing application.

7 Globus Toolkit Components

We now describe in more detail the Globus communications, information service, au-
thentication, and data access services. In each case, we outline how the component
maps to different implementations, is used to implement different higher-level services,
and supports the development of AWARE services and applications.

7.1 Communications

The Globus communications module is based on the Nexus communication library [11].
Nexus defines five basic abstractions: nodes, contexts, threads, communication links,
and remote service requests. The Nexus functions that manipulate these abstractions
constitute the Globus communication interface. This interface is used extensively
by other Globus modules and has also been used to construct various higher-level
services, including parallel programming tools (Section 8.1). The Active Messages [19]
and Fast Messages [24] systems have similarities in goals and approach, but there are
also significant differences [7].

15
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Nexus programs bind communication startpoints and endpoints to form commu-
nication links. If multiple startpoints are bound to an endpoint, incoming communi-
cations are interleaved, in the same manner as messages sent to the same node in a
message passing system. If a startpoint is bound to multiple endpoints, communica-
tion results in a multicast operation. A startpoint can be copied between processors,
causing new communication links to be created that mirror the links associated with
the original startpoint. This support for copying means that startpoints can be used
as global names for objects. These names can be communicated and used anywhere
in a distributed system.

A communication link supports a single communication operation: an asynchronous
remote service request (RSR). An RSR is applied to a startpoint by providing a pro-
cedure name and a data buffer. For each endpoint linked to the startpoint, the RSR
transfers the data buffer to the address space in which the endpoint is located and
remotely invokes the specified procedure, passing the endpoint and the data buffer
as arguments. A local address can be associated with an endpoint, in which case
startpoints associated with the endpoint can be thought of as “global pointers to that
address.

The Nexus interface and implementation support rule-based selection (Section 6.2)
of the methods—such as protocol, compression method, and quality of service—used to
perform communication [7]. Different communication methods can be associated with
different communication links, with selection rules determining which method should
be used when a new link is established. These mechanisms have been used to support
multiple communication protocols [7] and selective use of secure communication [10]
in heterogeneous environments.
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7.2 Metacomputing Directory Service

As noted above, metacomputing environments depend critically on access to informa-
tion about the underlying networked supercomputing system. Required information
can include the following.

o Configuration details about resources such as the amount of memory, CPU
speed, number of nodes in a parallel computer, or the number and type of
network interfaces available.

e Instantaneous performance information, such as point-to-point network latency,
available network bandwidth, and CPU load.

e Application-specific information, such as memory requirements or program struc-
tures found effective on previous runs.

Different data items will have different scopes of interest and security requirements,
but some information at least may potentially be required globally, by any system
component. Information may be obtained from multiple sources: for example, from
standard information services such as the Network Information Service (NIS) or Simple
Network Management Protocol (SNMP); from specialized services such as the Network
Weather Service [27]; or from external sources such as the system manager or an
application.

Globus defines a single, unified access mechanism for this wide range of informa-
tion, called the Metacomputing Directory Service (MDS) [6]. Building on the data
representation and application programming interface defined by the Lightweight Di-
rectory Access Protocol (LDAP), MDS defines a framework in which can be repre-
sented information of interest in distributed computing applications. Information is
structured as a set of entries, where each entry comprises zero or more attribute-value
pairs. The type of an entry, called its object class, specifies mandatory and optional
attributes (see Figure 8).

MDS information can be maintained within conventional LDAP servers. However,
the performance and functionality requirements of metacomputing applications moti-
vate a number of extensions. A proxy mechanism supports the integration of other
data services, such as SNMP and NIS, and allows remote access. We are currently
investigating approaches to caching and replication, and the definition of a notification
interface that will allow higher-level services or applications to request notifications
when specified conditions become true.

7.3 Authentication Methods

The initial version of the Globus authentication module supported password, Unix
RSH, and Secure Socket Layer authentication. To increase the degree of abstrac-
tion at the toolkit interface, we are moving towards the use of the Generic Security
System (GSS) [17]. GSS defines a standard procedure and API for obtaining creden-
tials (passwords or certificates), for mutual authentication (client and server), and for
message-oriented encryption and decryption. GSS is independent of any particular
security mechanism and can be layered on top of different security methods, such as
Kerberos and SSL.

GSS must be altered and extended to meet the requirements of metacomputing
environments. As a metacomputing system may use different authentication mecha-
nisms in different situations and for different purposes, we require a GSS implemen-
tation that supports the concurrent use of different security mechanisms. In addition,
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GlobusHost OBJECT CLASS GlobusResource 0BJECT CLASS

SUBCLASS OF GlobusResource SUBCLASS OF top
MUST CONTAIN { MUST CONTAIN {
hostName :: cis, administrator :: dn
type 1: cis, }
vendor :: cis, MAY CONTAIN {
model :: cis, manager :: dn,
0Stype 1 cis, provider :: dn,
OSversion 11 cis technician :: dn,
} description  :: cis,
MAY CONTAIN { documentation :: cis
networkNode :: dn, }
totalMemory :: cis,
totalSwap 1: cis,
dataCache :: cis,
instructionCache :: cis
}

Figure 8: Simplified versions of the MDS object classes GlobusHost and
GlobusResource

inquiry and selection functions are needed so that higher-level services implementing
specific security policies can select from available low- level security mechanisms.

7.4 Data Access Services

Services that provide metacomputing applications with access to persistent data can
face stringent performance requirements and must support access to data located in
multiple administrative domains. Distributed file systems such as the Network File
System and Distributed File System address remote access to some extent but have
not been designed for high-performance applications. Parallel file systems and I/O
libraries have been designed for performance but not for distributed execution.

To address these problems, the Globus data access module defines primitives that
provide remote access to parallel file systems. This remote I/O (RIO) interface (Fig-
ure ?7) is based on the abstract I/O device (ADIO) interface [26]. ADIO defines an
interface for opening, closing, reading and writing parallel files. It does not define
semantics for caching, file replication, or parallel file descriptor semantics. Several
popular I/O systems have been implemented efficiently on ADIO [26]. RIO extends
ADIO by adding transparent remote access and global naming using a URL- based
naming scheme. RIO remote access features use Nexus mechanisms.

8 Higher-Level Services

In the preceding section, we described the core interfaces and services provided by
the Globus toolkit. These interfaces are not intended for application use. Rather,
they are intended to be used to construct higher-level policy components. These
policy components can serve the function of middleware, on which yet higher-level
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components are constructed to create application-level interfaces. In the following, we
describe two such middleware components.

8.1 Parallel Programming Interfaces

Numerous parallel programming interfaces have been adapted to use Globus authen-
tication, process creation, and communication services, hence allowing programmers
to develop metacomputing applications using familiar tools. These interfaces include
a complete implementation of MPI (and hence tools layered on top of MPI, such as
many High Performance Fortran systems); Compositional C++ [3], a parallel exten-
sion to C++; Fortran M, a task- parallel Fortran; nPerl, a version of the Perl scripting
language extended with remote reference and remote procedure call mechanisms; and
NexusJava, a Java class library that supports remote procedure calls.

We say a few words here about the Globus implementation of MPI. A “Nexus de-
vice” supports the abstract device interface used within the MPICH implementation
of MPI [14]. This device uses Nexus RSRs to implement the basic data transfer op-
erations required by MPI [9]; higher-level MPI functionality then transfers unchanged
from MPICH. In the initial MPI/Nexus implementation, an overhead for a zero-length
message of 60 psec was noted on an IBM SP2 with Power 1 processors (raw MPICH
zero-length message cost is 83.8 usec, and raw Nexus RSR cost is 82.8 pusec); the
overhead for larger messages is insignificant. A recent redesign of both Nexus and
the MPICH abstract device interface has succeeded in eliminating most of this over-
head. In addition to this use of Nexus, the Globus implementation of MPI uses Globus
mechanisms for authentication and process startup [10]. These components are suffi-
ciently integrated that in the I-WAY a user could allocate a heterogeneous collection
of resources and then start a program simply by typing “impirun.” Under the covers,
of course, Globus mechanisms are used to select appropriate authentication, process
creation, and communication mechanisms.

8.2 Unified Certificate-based Authentication

The Globus authentication interface can be used to implement a range of different
security policies. We are currently investigating a policy that defines a global, pub-
lic key-based authentication space for all users and resources. That is, we provide a
centralized authority that defines system-wide names (“accounts”) for users and re-
sources. These names allow an application to use a single “user id” and “password”
for all resources. They also permit the application to verify the identity of requested
resources. Note that this policy does not address authorization: resources can use
their usual mechanisms to determine the users to which they will grant access.

While not practical for large-scale, open environments, the use of a centralized au-
thority to identify users and resources is appropriate for limited-scale testbed environ-
ments such as the I-WAY and GUSTO (see below). The approach has the significant
advantage that it can be implemented easily with current certificate-based authenti-
cation protocols, such as that provided in the Secure Socket Library (SSL). Note that
while names (that is, certificates) are issued by a centralized certificate authority, the
authentication of users and services involves only the agents being authenticated; it
does not require any interaction with the issuing authority.

In the longer term, authentication and authorization schemes must address the
requirements of larger, dynamic, heterogeneous communities, in which trust relation-
ships span multiple administrative domains and can be irregular and selective. Some
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member organizations will be more trusting of specific members than others; still
others may be competitors. Some members may feel the need to control all trust
relationships explicitly, even if it means that fewer community assets are available
for their use; this may stimulate the evolution of sub-communities with their own set
of trust and authorization relationships. Community members willing to delegate to
other members the ability to extend relationships on their behalf may more fully enjoy
the benefits of membership in the greater community.

Our certificate-based policy can be extended to support limited forms of trust
delegation. Globus resource certificates can be given to sites with multiple resources
(or users). These sites can in turn set up a local certificate authority, which signs
certificates that it issues with the certificate issued by the Globus authority. This
situation is acceptable if the user (or resource) trusts the administration of the site
issuing the Globus-signed certificate.

9 Globus Testbeds and Experiences

We have referred above to the -WAY experiment, in which a number of Globus com-
ponents were first deployed as part of the I-Soft software environment [8]. These com-
ponents included the Nexus communication library, Kerberos-based authentication, a
process creation mechanism, and a centralized scheduler for compute resources. While
inadequate in a number of respects (e.g., nonscalable, no scheduling of network re-
sources), this experiment did demonstrate the advantages of the Globus approach of
providing basic mechanisms. I-WAY applications developed with a variety of parallel
tools (MPI, CAVEcomm, CC++, etc.) were ported to the -WAY environment by
adapting those tools to use Globus mechanisms for authentication, process creation,
and communication. If Globus had enforced a particular parallel programming inter-
face, considerable effort would have been required to adapt existing applications to
use this interface.

We are currently working with the high-performance computing community to de-
fine additional testbeds. We describe here just one of these, the Globus Ubiquitous
Supercomputing Testbed (GUSTO). GUSTO is intended initially at least as a com-
puter science rather than an application testbed, meaning that the initial development
focus is on deploying and evaluating basic mechanisms for authentication, scheduling,
communication, and information infrastructure. In this respect it complements efforts
such as the I-WAY that focus more on applications.

GUSTO is intended to span approximately fifteen sites, encompassing a number of
supercomputers (IBM SP2, Silicon Graphics Power Challenge, etc.), and workstations.
Basic connectivity is via the Internet, although some machines are also connected via
OC3 (155 Mb/sec) ATM networks. Eventually, we expect most GUSTO sites to be
accessible over the National Science Foundation’s OC3 vBNS network. Authentication
is based on the uniform certificate mechanism described above. The initial information
service is provided by an information server that maintains information about resource
configuration and current network characteristics [6]. This information is updated
dynamically, providing a more accurate view of system configuration than was available
in I-Soft [8].
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10 Requirements

11 Future opertunities

Interdisciplinary research
weather forecast - medical conditions environmental research - helath conditions
geographical data bases ...

12 Conclusion

The Globus project is attacking the metacomputing software problem from the bottom
up, by developing basic mechanisms that can be used to implement a variety of higher-
level services. Communication, resource location, resource allocation, information,
authentication, data access, and other services have been identified, and considerable
progress has been made toward constructing quality implementations. The definition,
development, application, evaluation, and refinement of these components are ongoing
processes that we expect to proceed for the next two years at least. We hope to
involve more of the metacomputing community in this process, by adapting relevant
higher- level services (e.g., application-level scheduling [1], performance steering [25],
object-based libraries [13]) to use Globus mechanisms, and by participating in the
construction of additional testbeds (e.g., GUSTO).

The Globus project is also addressing the configuration problem in metacomputing
systems, with the goal of producing an Adaptive Wide Area Resource Environment
that supports the construction of adaptive services and applications. We have intro-
duced selection, information, and notification mechanisms and have defined Globus
component interfaces so that these mechanisms can be used to guide the configuration
process. Preliminary experiments with dynamic communication selection suggest that
these configuration mechanisms can have considerable value [7].

In summary, we list three areas in which we believe the Globus project has already
made contributions and in which we hope to see considerable further progress:

e The definition of a core metacomputing system architecture on which a range
of alternative metacomputing environments can be built.

e The development of a framework that allows applications to respond to dynamic
behaviors in the underlying metacomputing environment, and the definition and
evaluation of various adaptation policies.

e The demonstration in testbeds such as the I-WAY and GUSTO that useful
higher-level services can be layered effectively on top of the interfaces defined by
the Globus toolkit, and that automatic configuration mechanisms can be used
to enhance portability and performance.

Telemedicine.
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